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LEITER TO THE EDITOR 

Exact relation between relativistic and non-relativistic Green 
functions for independent particles in a given external potential 

R Baltin? and N H MarchS 
t Theoretical Chemistry Department, University of Ulm, Oberer Eselsberg, 7900 Ulm, 
Federal Republic of Germany 
$ Theoretical Chemistry Department, University of Oxford, 1 South Parks Road, Oxford 
OX1 3TG. UK 

Received 20 January 1989 

Abstract. Well established integral equations already exist for both relativistic (G'") and 
non-relativistic (G"") Green functions for independent particles moving in a given external 
potential V. In this paper, an exact integral equation giving G'" in terms solely of G'"" 
and known operators is derived, by eliminating V. The connection with relativistic density 
functional theory is emphasised. 

In recent work, we have been concerned with relativistic density functional theory in 
the framework of ( a )  a square barrier model of an inhomogeneous electron gas [ 13 
and (b)  a linear response theory of perturbations in an initially uniform electron gas 
[2]. This latter work has been utilised more recently [3,4] to exhibit a formal relation 
between relativistic and non-relativistic electron densities for independent particles 
moving in a given weak external potential. 

The purpose of the present letter is to derive an exact relation between relativistic 
G'" and non-relativistic G'"') Green functions. 

The starting point of the present work can be usefully taken as the defining equation 
for the components GZA(x, x', s) of the relativistic Green's function. This can be written 
as (cf equation (2.90) of [2]) 

4 

(HF; - SS,,)G$;(X, x', S)  + V(X)G~A(X, x', S) = S,,@S(X - x') ( 1 )  
y = l  

where H?$ are the components of the free-electron Hamilton operator 

mc2 o cp, cp- 
mc2 cp+ 

- C P Z  - mc2 

/ m c 2  o cp, cp- \ 
o mc2 cp+ 

cp, cp- -mc2 -7 J 
cp, -cpz o -mc2 

H ' O )  E 

and 

with momentum operators pu = -iha/ax,, (Y = x, y, z. The procedure employed is to 
eliminate the external potential V(x) from (1) by using the non-relativistic scalar Green 
function 
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where + j ( x )  and Ej are eigenfunctions and eigenvalues of the Schrodinger equation 
for the given external potential energy V(x). 

As is readily seen, G'"''(x, x', s) not only satisfies 

[ T(x) + V(X) - s]G("')(x, x', S)  = S(X -x') (5a) 

[T(x')+ v(x"-s]G'"''(~, XI, s ) = S ( X - X ' )  ( 5 6 )  

but also 

where 

h2 
2m 

T ( x )  = -- v', . 

By relabelling the variables in ( 5 6 )  by X" instead of x and x instead of x', this equation 
can be written as 

G("')(x", X, S)  V(X) = S(X"- X) - ( T(x) - s)G("')(x", X, s). (7) 

The next step is to multiply (1) by G'"" (x", x, s) and then to integrate over x E R, 
where R G R3 is the spatial domain accessible to the particle. The resulting equation is 

1, d3x G("')(x", x, s)[Hio,!(x) - s8,,]G$(x, x', S)  
y = l  

d 3 ~ [ S ( ~ ' f - ~ ) - ( T ( ~ ) - ~ ) G ( " ' ) ( ~ ' f ,  X, s)]G$A(x, x', S)  
+ I, 

= SUgG("')(xf', x', s). 

In writing (8), the term 
r 

d3x G'"''(x", x, s) V(x)G$(x, x', s) J, 
was rewritten by using (7). 

G$(x", x', s) 

From (8) we then find 

x [ H ~ , ! ( x )  -sS,,]G$(X, x', s)}  

+ d3x[( T ( x )  - s ) G ( " ' ) ( x " ,  X, ~)]G:;(x, x', S)  I 
where it will be seen that the terms with s multiplying G("')G(') cancel. 
In what follows let us suppose that, for x' f x'~, 

(9) 

I, d3x[ T ( x ) G ( " ' ) ( x ' ' ,  x, s)]G$(r, x', s) = d3x G("')(xf', x ' ,  s)[ T(x)G$(x, x', s)]. I, 
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Usually, Gauss’ theorem is proved under the condition that all functions involved are 
continuously differentiable twice on 0. However, G‘””(x’’, x, s) is singular at x = X” 

and G$(x, x’, s) is singular at x = x’, so it is not self-evident that (10) is valid here. 
Furthermore, if R = R3, integrals over the surface of the infinite sphere vanish only if 
the integrand falls off rapidly enough at infinity so that Gauss’ theorem takes the form 

However, Gauss’ theorem can be applied under much less restrictive conditions 
on the smoothness of the integrand as will be demonstrated explicitly for the case of 
a free particle below (i.e. for V ( x )  = 0 Vx, Q = R2). This example will show also that 
surface integrals at infinity must vanish because the decay of the free-particle Green 
functions G$“’ and Gbfhs is faster than exponential as 1x1 + 00 (with x” and x‘ held 
fixed) provided that Im( s’12) and Im( s2 - m2c4) ‘ I 2  are taken to be positive, respectively. 

of (10). 

The non-relativistic Green function is given by [ 51 

m e~p[i(2ms/h~)’/~1x-x’l]  
27rh21x - X’I 

Gg”(x, x’, s) = 

and the components of the relativistic Green function for a free particle are [6] 

Gbfh,( X, x’, S) = (H$( X) + sa,, ) P (  IX - x’I, S) (12) 
where 

Evidently, if the imaginary parts of the square roots in expressions (11) and (13) are 
positive, the Green functions fall off rapidly enough to guarantee vanishing surface 
integrals when applying Gauss’ theorem. 

For those components (a,/?) for which Hi? (equation (2)) does not contain a 
momentum operator, the corresponding component Gbfbs has a singularity at x’ = x 
of the same strength as P has, namely -~x ’ -x~- ’ .  If, however, H$ contains a 
momentum operator, the singularity of G$bs is stronger still. For instance, 
G;\,(x,x’, s)= cpzP(Ix-x’l, s) behaves like ( z ‘ - z ) / I x - x ’ ~ ~  as x ’ + x  

To prove the validity of (10) for the free-particle case it is therefore sufficient to 
consider this relation for one component of G,(r) which has the stronger divergence 
mentioned. If (10) turns out to be valid for this case, it is satisfied also for the more 
harmless components. Let us consider e.g. Gbf:, and introduce 

with Re( s i )  > 0, i = 1,2. Apart from unimportant prefactors, verification of (10) then 
amounts to showing that 

equals 

From 

V$J([X-X’l) = -4d(x-x ’ )+  q f J ( l x - x ’ l )  



L480 Letter to the Editor 

it follows that 

and, analogously, 

Using 

afz(lx-x”l) = -  af2(1x-x”l) 
az az” 

we obtain 

(18) 
a aw 

~ l - ~ z = ~ ~ a Z ” L f i ~ l ~ - ~ ‘ ~ I ~ - f i ~ l X - X ~ ’ l ~ l + ~ 4 : - 4 : ~ ,  az 

where the special form of the functions J (equation (14)) enables us to calculate 

W = lR3 fl( Ix - x’l)f2( (x - x”l) d3x’ (19) 

explicitly, yielding 

When this expression is inserted into (18), it follows that Zl = Z2, i.e. (10) is proved 
for the case of a free particle. 

Going back to the general case of spatially variable potentials, it does not seem to 
be easy to characterise a general function space containing elements G‘“” and G‘k:, 
which become singular when their spatial arguments coincide and, at the same time, 
obey (10). However, the free-particle case shows that this space is certainly not empty. 
So, for the time being, let us suppose that (10) remains valid for reasonable variable 
potentials, at least for a certain domain of the complex s plane. Thus we amve at 

GtA(x, XI, s) 

4 

= S,,G(”‘)(x, XI, s) - d3x1 G(”‘)(x, xl, s) 2 [H:,!(x,) - T(x,)S,,]  I, y = l  

x G$(xl, x’, s). (21) 

Here x has been written instead of x”, and x, instead of x. One may cast this basic 
equation (21) into a more concise form as follows. 

Define G(”l)(x, XI, s) = non-relativistic Green’s (4 x 4) matrix with components 

G$)(x, XI, s)  = SoSG(”‘)(x, XI, s)  

T“’(x) = S,,T(x) = -- s,,v:. 

(22) 

and T(”‘)(x) = non-relativistic kinetic energy operator matrix with components 

(23) 
fi 

2m 
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It follows that 
r 

where the 'perturbation' operator W is defined through 

W(x) = W'O'(x) -T("')(X). (25) 
Equation (24) is the main result of the present letter. It can be seen that it is an integral 
equation for the determination of the relativistic Green function 6'" given the non- 
relativistic result G'"r) for the chosen external potential. The 'perturbation' operator 
W in (25) is, of course, known explicitly through (2) and (23). 

Equation (24) provides a direct route to calculate the relativistic Green function 
from the non-relativistic result for independent particles moving in a chosen external 
potential. In the spirit of density functional theory, this external potential is here being 
characterised by the (assumed known) non-relativistic Green function. While (24) is 
an off-diagonal integral equation for G'r), given GCnr', we found [4] that, for a linear 
response theory, it can be reduced to an algebraic relation in Fourier space between 
diagonal electron densities with and without relativity. 
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